US009202053B1

a2 United States Patent

Huang et al.

US 9,202,053 B1
Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

MBR INFECTION DETECTION USING
EMULATION

Applicants: Yong Huang, Nanjing (CN); Hua Ye,
Nanjing (CN); Hong Bo Gan, Nanjing
(CN); Yue Feng Li, Nanjing (CN)
Inventors: Yong Huang, Nanjing (CN); Hua Ye,
Nanjing (CN); Hong Bo Gan, Nanjing
(CN); Yue Feng Li, Nanjing (CN)

Assignee: Trend Micro Inc., Tokyo (IP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 330 days.

Appl. No.: 13/779,422

Filed: Feb. 27, 2013

Int. Cl1.
GO6F 11/00
GO6F 21/56
U.S. CL
CPC

(2006.01)

(2013.01)

............ GO6F 21/566 (2013.01); GO6F 21/561
(2013.01)

Field of Classification Search

CPC HO4L 63/145; GOG6F 21/56

USPC 726/22-25
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,941,641 B1* 52011 Jung ..o 712/209
2002/0166059 Al* 11/2002 Rickeyetal. 713/200
2004/0006689 Al* 1/2004 Milleretal. ... 713/1
2008/0092216 Al* 4/2008 Kawano etal. . . 726/5

* cited by examiner

Primary Examiner — Anthony Brown
(74) Attorney, Agent, or Firm — Beyer Law Group LLP

(57) ABSTRACT

Emulation software executes upon an operating system of a
computer and creates an emulated computer. Bootstrapping
code is read into this emulated computer from a sector (such
as a master boot record) of a mass storage device. Instructions
in the bootstrapping code are executed by an instruction emu-
lator (also using an emulated CPU, emulated memory and an
emulated hard disk) and these instructions and behavior are
collected as each instruction executes. Access to the actual
hard disk may be allowed. The collected information is then
compared to a virus signature or behavior rules indicating
malware and a conclusion is drawn as to whether the boot-
strapping code includes malicious software.

20 Claims, 4 Drawing Sheets

~ 210
MBR Virtual Execution Modile
o Real Mode
MBR 280 Emulation
g ‘ :‘:r’//\ 278
Emulation |4 : RIS AP instruglion {1 | High Level
polridl - High Leve
Agent # ! 274 Erulator :
¢ i b e 288
) § Hard Disk "]
220 [Memuory : b L ow Lavel
282 4 O Py
e s B R i SN
T T ﬁ"“““? 230
I Kernel i Qperating System N
t

244

e e
Hardware g\) g&g @

MBR Emuiation System

U.S. Patent Dec. 1, 2015 Sheet 1 of 4 US 9,202,053 B1

80

W\f T s

110 Get MBR Content }

| J
Mew Flow) \
MBER Emulation
ﬁi}wi
J ;1
j
{E // 108
g N

b

4
} 4
120 Cheok MBR } ¢ e

Old Flow

U.S. Patent Dec. 1, 2015 Sheet 2 of 4 US 9,202,053 B1

{— 210
p
MBR Virtual Execution Module
Real Mode
MRBRR 280 Emutation
i F::::::::‘;‘;‘;‘;:’:::‘::_:E :,«—\ 978
N i x-...Tf“
Emulation : BI0S AP nstrution 17 L tion Level
Emutator B IHGN Leve
Agent @ : 274 ;
(| T L 288
) : Hard Disk v
220 L1 CPU | Memory = b L ow Level
282 284 /G Proxy
R et Wi AT TP 288
e
i
E Kermnel
£ s v n nn e e e A amn e ann on
Hardware
240

200

MBR Emulation System

U.S. Patent Dec. 1, 2015 Sheet 3 of 4 US 9,202,053 B1

@ infection DeteD

4 s
Execute Virtual Module and Emulation
Agent on Computsr

$

Obtain MBR Contenis J

$ j~3’§2

Simulate Execution of MBR Bootstrapping Code e

L 318 320
¥
4 //
Emulation Agent Collects and P Next_
) Instruction
Stores information 2 YES

328
324 NO
¥ ¥
Scan Engine Compares Scan Engine Compares
Signature of instruction Stream instruction Bshavior {o
to Virus Pattemn Behavior Rules
o END

FIG. 3

U.S. Patent Dec. 1, 2015 Sheet 4 of 4 US 9,202,053 B1

P
822 LS24 828 ~G1d
[/’fﬂ / (’f l/
PROCESSORS) MEMORY FIXED DISK REM&;QBLE
EN - A &
B30
& W ki 3 Y / =
- & & N N X o
S04 810 012 830 840
v ¥ // 4 / 4 // ! {/,
o NETWOR
DISPLAY KEYBOARD MOUSE SPEAKERS INTERFACE

FiG. 4B

US 9,202,053 B1

1
MBR INFECTION DETECTION USING
EMULATION

FIELD OF THE INVENTION

The present invention relates generally to detection of
malicious software on a computer. More specifically, the
present invention relates to detection of an infected master
boot record.

BACKGROUND OF THE INVENTION

Malicious software that targets computer systems contin-
ues to evolve and attack computers in different ways. One
relatively recent development is the use of malicious software
to target the master boot record (MBR) of a computer.

As known in the art, the master boot record is a special type
of sector of a hard disk (removable or fixed) or other mass
storage device that is typically located at the very beginning
of'ahard disk (often in the first sector). The master boot record
includes the bootstrapping code and a partition table, as well
as other information. Often, the actual bootstrapping code is
different from disk to disk, based on different operating sys-
tems.

One type of malicious software (or malware) that infects
the master boot record and is especially advanced and prob-
lematic is an MBR rootkit. An MBR rootkit (such as the
malware “Popureb”) buries itself (and hides) in the master
boot record and can be difficult to detect and remove. Because
it hides within the master boot record, such a rootkit can make
itself, and any follow-on malware installed by the rootkit,
invisible to both the operating system and to any antivirus
security software. Traditional techniques have relied upon
malware signatures in order to detect such malware within the
master boot record.

Unfortunately, just as other malware writers may use
packer software (e.g., UPX, ASProtect) to compress and hide
the true nature of their malicious software, more and more
rootkits are now encrypting an infected master boot record in
order to evade detection from antivirus software. For
example, a variant of the TDSS family of malware is known
to infect a clean master boot record and then encrypt the
resulting infected master boot record with a private crypto-
graphic key (which has been generated according to a specific
characteristic of the machine). Because each encryption
scheme on each machine will be different, each infected
master boot record will be different from that of any other
machine and thus more difficult to detect.

Furthermore, because of the encryption, traditional static
binary signature-based detection methods are not effective in
detecting an infected master boot record that has been
encrypted. In addition, using a whitelist to identify an
infected master boot record (e.g., by creating a hash of the
bootstrapping code) is not entirely effective because of the
false positives that have low confidence. Whitelist detection is
unable to identify which type of malware has infected the
computer, meaning that a security software product would not
know how to clean the computer. Moreover, cleaning the
computer with the wrong product (or when not necessary)
may be disastrous. Finally, the technique of reinstalling the
operating system (recommended by some operating system
developers) is extremely time consuming and may result in
loss of data.

Therefore, in consideration of the above problems with
prior art approaches, a new technique is desired to detect

10

20

25

40

45

50

55

65

2

infected master boot records, especially those that have been
encrypted by malicious software.

SUMMARY OF THE INVENTION

To achieve the foregoing, and in accordance with the pur-
pose of the present invention, a technique is disclosed that
detects infection of a sector of a mass storage device in a
computer by allowing bootstrapping code to execute within
an emulated computer.

In particular, the present invention presents a technique to
detect infection of a master boot record based upon instruc-
tion emulation. In addition to instruction emulation, CPU and
memory emulation is used, as well as hard disk emulation
(which also supports real disk accessing).

In one embodiment, emulation software executes upon an
operating system of a computer and creates an emulation
environment in which a computer is emulated. Bootstrapping
code is read into this emulation environment from a sector of
amass storage device, which is typically a master boot record
of a hard disk. Instructions in the bootstrapping code are
executed by an instruction emulator and information is col-
lected as each instruction executes. The collected information
is then compared either to a virus signature or rules indicating
malware and a conclusion may be drawn as to whether the
bootstrapping code includes malicious software.

In a second embodiment, emulation software executes
upon an operating system of a computer and creates an emu-
lation environment in which a computer is emulated. Boot-
strapping code is read into this emulation environment from a
sector of a mass storage device, which is typically a master
boot record of a hard disk. Instructions in the bootstrapping
code are handled by an instruction emulator and these execut-
able instructions are collected and stored for later analysis.
These stored instructions are then compared to a virus signa-
ture and a conclusion may be drawn as to whether the boot-
strapping code includes malicious software.

In a third embodiment, emulation software executes upon
an operating system of a computer and creates an emulation
environment in which a computer is emulated. Bootstrapping
code is read into this emulation environment from a sector of
amass storage device, which is typically a master boot record
of a hard disk. Instructions in the bootstrapping code are
handled by an instruction emulator and these executing
instructions exhibit certain behavior such as interrupt calls,
disk access requests, memory changes, etc. This behavior is
stored and then compared to behavior rules indicating mal-
ware and a conclusion may be drawn as to whether the boot-
strapping code includes malicious software.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken in conjunction with the accompanying drawings in
which:

FIG. 1 shows both a prior art approach and an embodiment
of the present invention.

FIG. 2 is a block diagram of an MBR emulation system.

FIG. 3 is a flow diagram describing one embodiment by
which infection of a master boot record is detected.

FIGS. 4A and 4B illustrate a computer system suitable for
implementing embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 at 100 shows both a prior art approach and an
embodiment of the present invention. A prior art approach

US 9,202,053 B1

3

105 begins with obtaining the contents of the master boot
record in a step 110 and then checking the master boot record
in step 120. This checking may involve comparing the binary
contents of the master boot record with a virus signature or
observing the behavior of execution of the master boot record
in an actual computer. As explained above, comparing the
contents of the master boot record with a virus signature may
be ineffective because the master boot record may be partially
encrypted by malicious software. Also, monitoring the
behavior of the master boot record as its instructions are
executed may result in actual harm to the computer system.

A new flow uses emulation of the master boot record in step
130 after its contents have been obtained. Emulation not only
allows the plain instructions of the master boot record to be
obtained, but also allows the behavior of the master boot
record to be analyzed without the risk of harm to the computer
system. Once emulation of the master boot record has been
performed, the master boot record instructions may be com-
pared to a virus signature or its behavior during execution
may be compared to malware detection rules.

Block Diagram

FIG. 2 is a block diagram of an MBR emulation system
200. Shown is a single computer system having hardware 240
and an operating system 230. The hardware and operating
system may be any familiar to those of skill in the art.
Included within the hardware are a CPU, memory chips or
boards, a network card, a mass storage device such as a hard
disk or solid-state disk, etc. Executing within the operating
system is an MBR virtual execution module 210 which emu-
lates a computer. Thus, execution of the MBR within this
execution module insulates the executed instructions from the
host computer 240 and prevents harm to the hardware or
operating system 230 if malware is present within the master
boot record.

The execution module 210 provides an emulated environ-
ment in which the bootstrapping code from the master boot
record may execute and may be a normal user mode applica-
tion. Module 210 may be custom code, may be based upon a
commercial software emulator (such as those available from
VMware, Connectix, VirtualBox, etc.), or may be imple-
mented using an open source software emulator such as
Bochs. The emulation provided by execution module 210
emulates an actual hardware computer including its CPU, I/O
devices, BIOS, etc. Through this emulation, the bootstrap-
ping code from the master boot record will “think” that it is
executing on a real machine, any encrypted malware will
decrypt itself, the bootstrapping code will execute, and any of
a variety of function calls, API calls etc. will be made not only
by legitimate code but also by any malicious code present.

The execution module 210 includes a number of submod-
ules and data present within its executing environment. MBR
code 260 refers to the bootstrapping code retrieved from the
master boot record on disk. High-level emulation is provided
by BIOS API 274 and instruction emulator 278 which provide
support for the executing bootstrapping code from the master
boot record. API 274 emulates an actual BIOS by allowing an
emulated instruction to call a particular function, and can
respond by providing information that an emulated instruc-
tion would expect. API 274 preferably does not actually inter-
act with the real BIOS of the hardware 240 and operating
system 230. Preferably any calls to the BIOS API 274 are
handled by emulation and are not passed to the actual BIOS.
Instruction emulator 278 is software that emulates the execu-
tion of the bootstrapping code 260 one instruction at a time, it
supports the complete instruction set that may be found

10

15

20

25

30

35

40

45

50

55

60

65

4

within the master boot record bootstrapping code. By emu-
lating these instructions, any malware found within the MBR
would not realize that it is not actually executing upon real
computer hardware.

Low-level emulation includes emulation of hardware such
as a CPU 282, memory 284, a hard disk 286 and an I/O proxy
288. Emulation of a CPU 282 includes the registers and other
essential parts of a CPU that are needed to support execution
of the MBR bootstrapping code such as an arithmetic logic
unit, control unit, etc.

Memory emulation 284 allows emulated instructions to
access a memory region, but does not provide unfettered
access to the actual memory of the computer. Preferably, a
region of memory is allocated within the emulation environ-
ment that is isolated from the regular memory and can be
monitored by the emulator. Hard disk emulation 286 can
emulate a hard disk by providing a disk image file on the host
machine. I/O Proxy 288 provides support for any disk access
APIs called by 274. The I/O proxy 288 may allow an emu-
lated instruction to read particular sectors from the actual
hard disk in hardware 240 (in addition to reading from emu-
lated hard disk 286) as proper functioning of the bootstrap-
ping code (including any expectation on the part of malware)
may require that these sectors be read. In addition, the I/O
proxy 288 will redirect all write operations to emulated hard
disk 286 when the bootstrapping code expects to be able to
write to certain sectors on the actual hard disk.

As mentioned above, because an MBR rootkit will often
take advantage of spare disk sectors on the actual hard disk to
store its malicious files, the I/O proxy 288 will be able to read
such infected sectors from the actual hard disk in hardware
240 in order to keep the bootstrapping code running properly.
For example, one variant of the TDSS rootkit family always
reads specific disk sectors in order to obtain its private key to
complete decryption of the master boot record. Without the
assistance of the 1/O proxy 288 in reading the actual disk,
emulation of this master boot record infected with this type of
rootkit would fail. Further, the I/O proxy is able to redirect
any write operation to disk 286 in order to avoid infecting the
actual disk during emulation of the MBR bootstrapping code.

Emulation agent 220 is a software application executing in
user mode within operating system 230 and preferably out-
side of the environment of execution module 210. Agent 220
collects information during emulation of the master boot
record. This information may include the actual executed
instructions (decrypted), any access to memory addresses, the
contents of each disk 1/O operation, etc. Further, agent 220
collects information useful for analyzing the behavior of the
MBR and information useful for allowing a scan engine to
match the MBR signature in the instruction stream with a
known virus signature. In another embodiment, the emulation
agent 220 is a module within execution module 210 and
collects the above information in a similar manner.

Flow Diagram

FIG. 3 is a flow diagram describing one embodiment by
which infection of a master boot record is detected. In a first
step 304, the host computer begins operating, it executes its
operating system and it may be infected by malware, such as
an MBR rootkit present in its master boot record. The execu-
tion module 210 begins execution as well as the emulation
agent 220.

In step 308 module 210 obtains the contents from the
master boot record and stores these contents within region
260, such as within memory allocated to the execution mod-
ule. Retrieval of contents from the master boot record on the

US 9,202,053 B1

5

actual hard disk of the host computer may be performed using
a suitable file /O API (application programming interface)
provided by the host operating system or by using a private
kernel driver.

Although the master boot record contains other informa-
tion in addition to the bootstrapping code (such as a partition
table, disk information, etc.), in one embodiment it is only
necessary to load the bootstrapping code from the master boot
record into region 260. And, while a portion of this bootstrap-
ping code may have been encrypted by malware, during the
course of instruction execution the malware will automati-
cally decrypt the code that it has encrypted.

In step 312 the execution module begins execution of the
bootstrapping code using instruction emulator 278. In one
embodiment, step 312 begins by executing the first instruc-
tion in the bootstrapping code (using emulated CPU 282 and
the other modules within module 210), and then proceeds to
execute each successive instruction in the loop shown in steps
312-320. If no malware is present, then the bootstrapping
code is made up of legitimate instructions that are able to be
executed by emulated CPU 282 (or by the actual CPU within
hardware 240). If malware has infected the bootstrapping
code, it is possible that any of the instructions of the boot-
strapping code have been encrypted by the malware and can-
not be executed by emulated CPU 282. But, MBR rootkits
typically will contain a decryption routine that has been
embedded within the bootstrapping code that will automati-
cally decrypt the encrypted portions as the bootstrapping
code is executed. Therefore, even if malware has encrypted a
portion of the bootstrapping code, the malware itself will
decrypt this bootstrapping code so that legitimate instructions
are presented to the emulated CPU 282.

As each instruction is executed, the emulation agent 220
collects and stores relevant information in step 316. This
information includes the raw instructions from the actual
bootstrapping code of the MBR, the plain instructions cap-
tured as each instruction is executed on CPU emulator 282,
any API calls made by the bootstrapping code to BIOS API
274, memory or disk operations, and other behavior
described below. Different malware may encrypt the MBR
instructions in different ways. The raw instructions are what
are obtained from the MBR sector and the decrypted plain
instructions are obtained from the instruction stream which is
executed on CPU 282 one-by-one (and which may have been
decrypted by code that is part of the malware). As explained
below, the behavior rules can determine whether or not sus-
picious calls are made to a specific BIOS API.

In one embodiment, the stream of raw instructions and
plain instructions are stored in actual memory of the host
computer or are stored in a file on the actual disk of the host
computer. Similarly, the captured API calls and other behav-
ior made by the bootstrapping code may also be stored in
actual memory or on the actual disk of the host computer.
Capturing and storing this information in this manner allows
a scan engine to later analyze any instructions and behavior of
the master boot record. In another embodiment, resulting
behavior is compared to behavior rules as the instructions are
executed.

Step 320 determines whether there is a next instruction. If
s0, then control returns to step 312 for simulated execution of
the next instruction. If not, then control moves to either step
324 or step 328, or both. Determining when the bootstrapping
code has finished executing may be performed in different
manners. In one embodiment, it is known that the partition
boot record (PBR) is loaded into memory for execution after
the MBR executes. The partition boot record then searches for

10

15

20

25

30

35

40

45

50

55

60

65

6

the program “NtLoader” and launches it. The execution mod-
ule 210 monitors this behavior and when it occurs the execu-
tion module 210 will stop.

Step 324 uses a scan engine to compare any virus signature
or a virus pattern file to the plain instruction stream stored by
the emulation agent in step 316. Because the instruction
stream resulted from actual execution of the master boot
record, in which any malware present would have decrypted
the instructions, the instruction stream includes the raw, unen-
crypted bootstrapping code of the master boot record and may
be compared to virus signatures. It is thus possible to deter-
mine the presence of any malicious software within the mas-
ter boot record by determining if any virus signature matches
this instruction stream.

In addition, step 328 may compare the behavior of instruc-
tions captured by emulation agent in step 316 to particular
behavior rules indicating malicious activity. It is known that
the BIOS interrupt call 13 (hexadecimal) “INT 13H” is a
particular disk I/O operation; any hooking behavior to such a
call may be considered suspect. And further, any INT 13H
calls having particular sector numbers as parameters may be
suspect if these are sectors where malware normally stores
data or from where malware normally reads data.

In one specific embodiment, these rules indicate behavior
of'a particular MBR rootkit known as “TDL4,” which behav-
ior may also indicate presence of other types of malicious
software within the master boot record. Suspicious behavior
may include the following: 1) hooking the interrupt service
routine with an index 0x13h in the interrupt vector table (a
normal master boot record does not have such a hook); 2)
reading raw disk sectors but not the VBR sector (a normal
master boot record reads only the VBR sector); 3) performing
self decryption (a normal master boot record does not per-
form decryption of itself); 4) jumping to an abnormal
memory region (a normal MBR executes in a fixed memory
region and will not jump out of this fixed region); 5) changing
the value in memory address 0000:0413h (a normal master
boot record will not change this value but malware will
decrease the value in order to allocate more memory for itself.
In other examples, calls to specific APIs in BIOS AP1274 may
be considered suspect by the behavior rules.

If steps 324 or 328 indicate that malicious software is
present in the master boot record (either because instructions
match a virus signature or because behaviors in the instruc-
tions match a rule or rules) then any suitable output may occur
such as displaying a message on the screen of the computer,
sending an e-mail message, communicating over a network,
updating a remote Web site, printing a report, writing infor-
mation to a file on the computer, etc.

Computer System Embodiment

FIGS. 4A and 4B illustrate a computer system 900 suitable
for implementing embodiments of the present invention. FIG.
4 A shows one possible physical form of the computer system.
Of course, the computer system may have many physical
forms including an integrated circuit, a printed circuit board,
a small handheld device (such as a mobile telephone or PDA),
a personal computer or a super computer. Computer system
900 includes a monitor 902, a display 904, a housing 906, a
disk drive 908, a keyboard 910 and a mouse 912. Disk 914 is
a computer-readable medium used to transfer data to and
from computer system 900.

FIG. 4B is an example of a block diagram for computer
system 900. Attached to system bus 920 are a wide variety of
subsystems. Processor(s) 922 (also referred to as central pro-
cessing units, or CPUs) are coupled to storage devices includ-

US 9,202,053 B1

7

ing memory 924. Memory 924 includes random access
memory (RAM) and read-only memory (ROM). As is well
known in the art, ROM acts to transfer data and instructions
uni-directionally to the CPU and RAM is used typically to
transfer data and instructions in a bi-directional manner Both
of these types of memories may include any suitable of the
computer-readable media described below. A fixed disk 926
is also coupled bi-directionally to CPU 922; it provides addi-
tional data storage capacity and may also include any of the
computer-readable media described below. Fixed disk 926
may be used to store programs, data and the like and is
typically a secondary storage medium (such as a hard disk)
that is slower than primary storage. It will be appreciated that
the information retained within fixed disk 926, may, in appro-
priate cases, be incorporated in standard fashion as virtual
memory in memory 924. Removable disk 914 may take the
form of any of the computer-readable media described below.
In addition to disks 914 and 926, other types of mass storage
devices such as a solid-state disk may also be used.

CPU 922 is also coupled to a variety of input/output
devices such as display 904, keyboard 910, mouse 912 and
speakers 930. In general, an input/output device may be any
of: video displays, track balls, mice, keyboards, microphones,
touch-sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting
recognizers, biometrics readers, or other computers. CPU
922 optionally may be coupled to another computer or tele-
communications network using network interface 940. With
such a network interface, it is contemplated that the CPU
might receive information from the network, or might output
information to the network in the course of performing the
above-described method steps. Furthermore, method
embodiments of the present invention may execute solely
upon CPU 922 or may execute over a network such as the
Internet in conjunction with a remote CPU that shares a
portion of the processing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-readable
medium that have computer code thereon for performing
various computer-implemented operations. The media and
computer code may be those specially designed and con-
structed for the purposes of the present invention, or they may
be of the kind well known and available to those having skill
in the computer software arts. Examples of computer-read-
able media include, but are not limited to: magnetic media
such as hard disks, floppy disks, and magnetic tape; optical
media such as CD-ROMs and holographic devices; magneto-
optical media such as floptical disks; and hardware devices
that are specially configured to store and execute program
code, such as application-specific integrated circuits
(ASICs), programmable logic devices (PL.Ds) and ROM and
RAM devices. Examples of computer code include machine
code, such as produced by a compiler, and files containing
higher-level code that are executed by a computer using an
interpreter.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. Therefore, the
described embodiments should be taken as illustrative and not
restrictive, and the invention should not be limited to the
details given herein but should be defined by the following
claims and their full scope of equivalents.

We claim:
1. A method of detecting infection in a sector of a mass
storage device of a computer, said method comprising:

10

20

25

30

35

40

45

50

55

60

8

executing emulation software within an operating system
of said computer, said emulation software creating an
emulated computer within said operating system;
reading, from said mass storage device of said computer,
bootstrapping code from said sector of said mass storage
device into said emulated computer;
executing said bootstrapping code within said emulated
computer,
during said execution of said bootstrapping code, collect-
ing and storing information resulting from said execu-
tion of said bootstrapping code; and
comparing said stored information to information indica-
tive of malware and outputting a result of said compar-
ing.
2. The method as recited in claim 1 wherein said sectoris a
master boot record of a disk of said computer.
3. The method as recited in claim 1 further comprising:
during said execution of said bootstrapping code, prohib-
iting an instruction of said bootstrapping code from writ-
ing information to a sector of said mass storage device.
4. The method as recited in claim 1 further comprising:
collecting and storing instructions from said bootstrapping
code that are executed within said emulated computer;
and
comparing said stored instructions to a virus signature.
5. The method as recited in claim 1 further comprising:
collecting and storing behaviors performed by said execut-
ing bootstrapping code within said emulated computer;
comparing said behaviors to at least one rule that indicates
malicious software.
6. The method as recited in claim 1 further comprising:
during said execution of said bootstrapping code, allowing
an instruction of said bootstrapping code to read infor-
mation from a second sector of said mass storage device.
7. The method as recited in claim 1 wherein said execution
of'said bootstrapping code decrypts a plurality of instructions
of said bootstrapping code that had been encrypted, said
method further comprising:
collecting and storing said decrypted instructions from said
bootstrapping code that are executed within said emu-
lated computer; and
comparing said decrypted instructions to a virus signature.
8. A method of detecting infection in a sector of a mass
storage device of a computer, said method comprising:
executing emulation software within an operating system
of said computer, said emulation software creating an
emulated computer within said operating system;
reading, from said mass storage device of said computer,
bootstrapping code from said sector of said mass storage
device into said emulated computer;
executing said bootstrapping code within said emulated
computer,
during said execution of said bootstrapping code, storing
instructions from said bootstrapping code that are
executed within said emulated computer; and
comparing said stored instructions to a virus signature
indicative of malware and outputting a result of said
comparing.
9. The method as recited in claim 8 wherein said sectoris a
master boot record of a disk of said computer.
10. The method as recited in claim 8 further comprising:
during said execution of said bootstrapping code, prohib-
iting an instruction of said bootstrapping code from writ-
ing information to a sector of said mass storage device.

US 9,202,053 B1

9

11. The method as recited in claim 8 wherein said execu-
tion of said bootstrapping code decrypts a plurality of instruc-
tions of said bootstrapping code that had been encrypted, said
method further comprising:

storing said decrypted instructions from said bootstrapping

code that are executed within said emulated computer;
and

comparing said decrypted instructions to said virus signa-

ture.

12. The method as recited in claim 8 further comprising:

during said execution of said bootstrapping code, allowing

a first instruction of said bootstrapping code to read
information from a second sector of said mass storage
device.

13. The method as recited in claim 12 further comprising:

during said execution of said bootstrapping code, redirect-

ing a second instruction of said bootstrapping code that
is attempting to store information to said mass storage
device to store information to memory in said computer
that emulates said mass storage device.

14. The method as recited in claim 1 wherein said boot-
strapping code includes instructions encrypted by malware
that cannot be executed by a CPU of said computer, said
method further comprising:

said bootstrapping code decrypting said decrypted instruc-

tions before said decrypted instructions are executed
within said emulated computer.

15. A method of detecting infection in a sector of a mass
storage device of a computer, said method comprising:

executing emulation software within an operating system

of said computer, said emulation software creating an
emulated computer within said operating system;

15

20

25

30

10

reading, from said mass storage device of said computer,
bootstrapping code from said sector of said mass storage
device into said emulated computer;

executing said bootstrapping code within said emulated

computer,

during said execution of said bootstrapping code, storing

API calls made by said executing bootstrapping code
within said emulated computer; and

comparing said stored API calls to at least one rule that

indicates malicious software and outputting a result of
said comparing.

16. The method as recited in claim 15 wherein said sector
is a master boot record of a disk of said computer.

17. The method as recited in claim 15 further comprising:

during said execution of said bootstrapping code, redirect-

ing an instruction of said bootstrapping code that is
attempting to store information to said mass storage
device to store information to memory in said computer
that emulates said mass storage device.

18. The method as recited in claim 15 wherein said API
calls are BIOS API calls.

19. The method as recited in claim 15 wherein said API
calls request disk access of said mass storage device of said
computer.

20. The method as recited in claim 15 further comprising:

receiving said API calls within said emulated computer;

and

handling said API calls by an emulated BIOS API within

said emulated computer without passing said API calls
to an actual BIOS of said computer.

#* #* #* #* #*

